

Environmental and Social Impact Assessment KAZ Oil Terminal Project, Iraq

# **Appendix H: Chapter 7 Technical Reports**



Environmental and Social Impact Assessment KAZ Oil Terminal Project, Iraq

# **Appendix H1: Groundwater Laboratory Analytical Certificates**



David Wells Earth & Marine Enviromental Consultants 6 Bell Yard WC2A 2JR London Environmental Science

i2 Analytical Ltd. ul.Pionierów 39, 41-711 Ruda Slaska, Poland

t: 004832 3426011 f: 004832 3426012

t: 01322 665566 f: 01322 661480 e: david.wells@eame.co.uk

## Analytical Report Number : 14-58890

Replaces Analytical Report Number : 14-58890, issue no. 1

| Project / Site name:                                                              | WTPS ESIA                                                                          | Samples received on:                                                           | 18/08/2014                              |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|
| Your job number:                                                                  |                                                                                    | Samples instructed on:                                                         | 21/08/2014                              |
| Your order number:                                                                |                                                                                    | Analysis completed by:                                                         | 29-08-2014                              |
| Report Issue Number:                                                              | 2                                                                                  | Report issued on:                                                              | 12/12/2014                              |
| Samples Analysed:<br>Dariusz Pio<br>V-ce Dyrektor ds.                             | 7 water samples                                                                    | Agnieszka<br>Fielia<br>Kierownik                                               | <i>Pictrowska</i><br>nta<br>ds. jakości |
| Signed:<br>Dariusz Piotrowski<br>Technical Manager<br>For & on behalf of i2 Analy | I2 Analytical Lim<br>Oddział w<br>ul. Pionie<br>41-711 Ruc<br>rtical Ltd. NIP 2050 | Signed:<br>Agnieszka Pietrowska<br>Quality Manager<br>For & on behalf of i2 An | alytical Ltd.                           |

Other office located at: Building 19, BRE, Garston, Watford, WD25 9XX

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

| soils     | <ul> <li>4 weeks from reporting</li> </ul> |
|-----------|--------------------------------------------|
| leachates | - 2 weeks from reporting                   |
| waters    | - 2 weeks from reporting                   |

Excel copies of reports are only valid when accompanied by this PDF certificate.

Page 1 of 12





Project / Site name: WTPS ESIA

| Lab Sample Number                        |       |                       | 365817        | 365818        | 365819        | 365820        |
|------------------------------------------|-------|-----------------------|---------------|---------------|---------------|---------------|
| Sample Reference                         |       |                       | BH01          | BH02          | BH03          | BH04          |
| Sample Number                            |       |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Depth (m)                                |       |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Date Sampled                             |       |                       | 14/08/2014    | 14/08/2014    | 14/08/2014    | 14/08/2014    |
| Time Taken                               |       |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Analytical Parameter<br>(Water Analysis) | Units | Limit of<br>detection |               |               |               |               |

| General Inorganics           |          |      |         |         |         |         |
|------------------------------|----------|------|---------|---------|---------|---------|
| pН                           | pH Units | N/A  | 8.0     | 7.8     | 7.5     | 7.8     |
| Electrical Conductivity      | μS/cm    | 10   | 37000   | 120000  | 46000   | 59000   |
| Salinity                     | ppt      | 2    | 26.2    | > 42    | 33.4    | > 42    |
| Total Cyanide                | µg/I     | 10   | < 10    | < 10    | < 10    | < 10    |
| Complex Cyanide              | µg/I     | 10   | < 10    | < 10    | < 10    | < 10    |
| Free Cyanide                 | µg/I     | 10   | < 10    | < 10    | < 10    | < 10    |
| Sulphate as SO <sub>4</sub>  | µg/I     | 45   | 1330000 | 2470000 | 1220000 | 3020000 |
| Chloride                     | mg/l     | 0.15 | 11000   | 45000   | 24000   | 20000   |
| Phosphate as PO <sub>4</sub> | µg/I     | 62   | < 62    | < 62    | < 62    | < 62    |
| Phosphate as P               | µg/l     | 20   | < 20    | < 20    | < 20    | < 20    |
| Ammonia as NH <sub>3</sub>   | µg/I     | 15   | 1400    | 6000    | 3300    | 880     |
| Total Nitrogen (Kjeldahl)    | mg/l     | 0.1  | 5.3     | 5.2     | 5.4     | 4.2     |
| Nitrate as N                 | mg/l     | 0.25 | 0.5     | < 0.3   | 1.0     | 0.9     |
| Nitrate as NO <sub>3</sub>   | mg/l     | 1.1  | 2.2     | < 1.1   | 4.6     | 3.8     |
| Nitrite as N                 | µg/l     | 25   | < 25    | 160     | 540     | 970     |
| Nitrite as NO <sub>2</sub>   | ua/l     | 82   | < 82    | 520     | 1800    | 3200    |

#### **Total Phenols**

| Total Phenols (monohydric) | µg/l | 10 | < 10 | < 10 | < 10 | < 10 |
|----------------------------|------|----|------|------|------|------|
|                            |      |    |      |      |      |      |

Heavy Metals / Metalloids

| Arsenic (dissolved)   | µg/l | 0.15  | 1.88   | 3.57   | 2.65   | 3.40   |
|-----------------------|------|-------|--------|--------|--------|--------|
| Cadmium (dissolved)   | µg/l | 0.02  | < 0.02 | 0.23   | 0.08   | < 0.02 |
| Chromium (hexavalent) | µg/l | 5     | < 5.0  | < 5.0  | < 5.0  | < 5.0  |
| Copper (dissolved)    | µg/l | 0.5   | 5.5    | 6.5    | 3.1    | 9.5    |
| Iron (dissolved)      | mg/l | 0.005 | 0.029  | 0.067  | 0.060  | 0.027  |
| Lead (dissolved)      | µg/l | 0.2   | 0.5    | 1.5    | 0.6    | 0.5    |
| Manganese (dissolved) | µg/l | 0.05  | 68     | 710    | 360    | 300    |
| Mercury (dissolved)   | µg/l | 0.05  | < 0.05 | < 0.05 | 1.29   | 0.73   |
| Nickel (dissolved)    | µg/l | 0.5   | 16     | 18     | 19     | 19     |
| Tin (dissolved)       | µg/l | 0.2   | 1.2    | 0.62   | < 0.20 | < 0.20 |
| Zinc (dissolved)      | µg/l | 0.5   | 1.9    | 3.1    | 5.7    | 2.6    |
|                       |      |       |        |        |        |        |
| Magnesium (dissolved) | mg/l | 0.002 | 370    | 1700   | 1100   | 910    |
|                       |      |       |        |        |        |        |
| Monoaromatics         |      |       |        |        |        |        |
| Benzene               | µg/l | 1     | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Toluene               | µg/l | 1     | < 1.0  | < 1.0  | < 1.0  | < 1.0  |

| Toluene                            | µg/l | 1  | < 1.0 | < 1.0 | < 1.0 | < 1.0 |
|------------------------------------|------|----|-------|-------|-------|-------|
| Ethylbenzene                       | µg/l | 1  | < 1.0 | < 1.0 | < 1.0 | < 1.0 |
| p & m-xylene                       | µg/l | 1  | < 1.0 | < 1.0 | < 1.0 | < 1.0 |
| o-xylene                           | µg/l | 1  | < 1.0 | < 1.0 | < 1.0 | < 1.0 |
| Total Btex in water                | µg/l | 5  | < 5.0 | < 5.0 | < 5.0 | < 5.0 |
|                                    |      |    |       |       |       |       |
| MTBE (Methyl Tertiary Butyl Ether) | µg/l | 1  | < 1.0 | < 1.0 | < 1.0 | < 1.0 |
| Petroleum Hydrocarbons             |      |    |       |       |       |       |
| TPH1 (C10 - C40)                   | µg/l | 10 | 1120  | < 10  | < 10  | < 10  |





| Lab Sample Number                        |                                |   | 365817                      | 365818        | 365819        | 365820        |
|------------------------------------------|--------------------------------|---|-----------------------------|---------------|---------------|---------------|
| Sample Reference                         |                                |   | BH01                        | BH02          | BH03          | BH04          |
| Sample Number                            |                                |   | None Supplied None Supplied |               | None Supplied | None Supplied |
| Depth (m)                                |                                |   | None Supplied               | None Supplied | None Supplied | None Supplied |
| Date Sampled                             |                                |   | 14/08/2014                  | 14/08/2014    | 14/08/2014    | 14/08/2014    |
| Time Taken                               |                                |   | None Supplied               | None Supplied | None Supplied | None Supplied |
|                                          |                                |   |                             |               |               |               |
| Analytical Parameter<br>(Water Analysis) | Limit of<br>detection<br>Units |   |                             |               |               |               |
| VOCs                                     |                                |   |                             |               |               |               |
| Chloromethane                            | ua/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Chloroethane                             | µ9/!                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Bromomethane                             | ug/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Vinyl Chloride                           | µg/1                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Trichlorofluoromethane                   | μg/1<br>μα/Ι                   | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1 1-dichloroethene                       | ug/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1.1.2-Trichloro 1.2.2-Trifluoroethane    | uo/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Cis-1,2-dichloroethene                   | μα/I                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| MTBE (Methyl Tertiary Butyl Ether)       | μα/I                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1,1-dichloroethane                       | μα/I                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 2.2-Dichloropropane                      | ua/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Trichloromethane                         | ua/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1.1.1-Trichloroethane                    | ua/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1.2-dichloroethane                       | ua/l                           | 1 | 976                         | 990           | 657           | 847           |
| 1.1-Dichloropropene                      | ua/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Trans-1.2-dichloroethene                 | ua/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Benzene                                  | ua/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Tetrachloromethane                       | ua/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1.2-dichloropropane                      | ua/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Trichloroethene                          | ua/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Dibromomethane                           | ua/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Bromodichloromethane                     | ua/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Cis-1,3-dichloropropene                  | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Trans-1,3-dichloropropene                | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Toluene                                  | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1,1,2-Trichloroethane                    | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1,3-Dichloropropane                      | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Dibromochloromethane                     | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Tetrachloroethene                        | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dibromoethane                        | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Chlorobenzene                            | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1,1,1,2-Tetrachloroethane                | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Ethylbenzene                             | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| p & m-xylene                             | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Styrene                                  | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Tribromomethane                          | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| o-xylene                                 | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1,1,2,2-Tetrachloroethane                | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Isopropylbenzene                         | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Bromobenzene                             | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| N-Propylbenzene                          | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 2-Chlorotoluene                          | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 4-Chlorotoluene                          | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1,3,5-Trimethylbenzene                   | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Tert-Butylbenzene                        | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1,2,4-Trimethylbenzene                   | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| Sec-Butylbenzene                         | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1,3-dichlorobenzene                      | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| P-Isopropyltoluene                       | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |
| 1,2-dichlorobenzene                      | µg/l                           | 1 | < 1.0                       | < 1.0         | < 1.0         | < 1.0         |





| Lah Sample Number                        |              |                       | 265017        | 265010        | 265910        | 265920        |
|------------------------------------------|--------------|-----------------------|---------------|---------------|---------------|---------------|
|                                          |              |                       | 303017        | 202010        | 303019        | 363620        |
|                                          |              |                       | BHU1          | BHU2          | BHU3          | BH04          |
|                                          |              |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Depth (m)                                |              |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Date Sampled                             |              |                       | 14/08/2014    | 14/08/2014    | 14/08/2014    | 14/08/2014    |
| lime laken                               | -            | -                     | None Supplied | None Supplied | None Supplied | None Supplied |
| Analytical Parameter<br>(Water Analysis) | Units        | Limit of<br>detection |               |               |               |               |
| 1 4-dichlorobenzene                      | ua/l         | 1                     | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Butylbenzene                             | µg/1         | 1                     | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1 2-Dibromo-3-chloropropage              | µg/1         | 1                     | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1 2 4-Trichlorobenzene                   | µg/!         | 1                     | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Hexachlorobutadiana                      | µg/1         | 1                     | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1 2 3-Trichlorobenzene                   | µg/i         | 1                     | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
|                                          | P9/1         | 1                     | \$ 110        | 110           | 110           | \$ 110        |
| SVOCs                                    |              |                       |               |               |               |               |
| Aniline                                  | µg/l         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Phenol                                   | μα/I         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 2-Chlorophenol                           | ua/l         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Bis(2-chloroethyl)ether                  | ua/l         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 1.3-Dichlorobenzene                      | ua/l         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 1.2-Dichlorobenzene                      | ua/l         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 1.4-Dichlorobenzene                      | ua/l         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Bis(2-chloroisonropyl)ether              | ug/l         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 2-Methylphenol                           | ug/l         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Hexachloroethane                         | ug/l         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Nitrobenzene                             | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 4-Methylphenol                           | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Isonhorone                               | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 2-Nitronhenol                            | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 2 4-Dimethylphenol                       | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Bis(2-chloroethoxy)methane               | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 1.2.4-Trichlorobenzene                   | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Nanhthalene                              | µg/1         | 0.03                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 2 4-Dichlorophenol                       | µg/1         | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| 4-Chloroppiling                          | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Hexachlorobutadiene                      | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 4-Chloro-3-methylphenol                  | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 2.4.6-Trichlorophenol                    | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 2 4 5-Trichlorophenol                    | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
|                                          | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 2-Chloronanhthalene                      | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Dimethylphthalate                        | µg/1         | 0.05                  | 2.0           | 0.05          | < 0.05        | 0.05          |
| 2 6-Dinitrotoluene                       | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Acenandthylene                           | µg/1         | 0.03                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Acenaphthene                             | µg/1         | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| 2 4-Dinitrotoluene                       | µg/1         | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| Dihenzofuran                             | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 4-Chlorophenyl phenyl ether              | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Diethyl phthalate                        | µg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| 4-Nitroaniline                           | μg/1<br>μα/Ι | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Fluorene                                 | μg/1<br>μα/Ι | 0.05                  | < 0.05        | < 0.03        | < 0.05        | < 0.05        |
| Λτομοητομο                               | μg/1         | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| Riomonhanyl nhanyl athar                 | μg/1         | 0.05                  | < 0.05        | < 0.05        |               | < 0.05        |
|                                          | µg/1         | 0.05                  | < 0.05        | < 0.05        |               | < 0.05        |
| Departhrong                              | μg/1         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
|                                          | μg/1         | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
|                                          | µg/I         | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
|                                          | µg/I         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
|                                          | ua/i         | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |





### Analytical Report Number: 14-58890 Project / Site name: WTPS ESIA

| Lab Sample Number                        |       | 365817                | 365818        | 365819        | 365820        |               |
|------------------------------------------|-------|-----------------------|---------------|---------------|---------------|---------------|
| Sample Reference                         |       |                       | BH01          | BH02          | BH03          | BH04          |
| Sample Number                            |       |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Depth (m)                                |       |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Date Sampled                             |       |                       | 14/08/2014    | 14/08/2014    | 14/08/2014    | 14/08/2014    |
| Time Taken                               |       |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Analytical Parameter<br>(Water Analysis) | Units | Limit of<br>detection |               |               |               |               |
| Anthraquinone                            | µg/l  | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Fluoranthene                             | µg/l  | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| Pyrene                                   | µg/l  | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| Butyl benzyl phthalate                   | µg/l  | 0.05                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Benzo(a)anthracene                       | µg/l  | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| Chrysene                                 | µg/l  | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| Benzo(b)fluoranthene                     | µg/l  | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| Benzo(k)fluoranthene                     | µg/l  | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| Benzo(a)pyrene                           | µg/l  | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| Indeno(1,2,3-cd)pyrene                   | µg/l  | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| Dibenz(a,h)anthracene                    | µg/l  | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| Benzo(ghi)perylene                       | µg/l  | 0.01                  | < 0.01        | < 0.01        | < 0.01        | < 0.01        |





Project / Site name: WTPS ESIA

| Lab Sample Number                        |       |                       | 365821        | 365822        | 365823        |
|------------------------------------------|-------|-----------------------|---------------|---------------|---------------|
| Sample Reference                         |       |                       | BH05          | BH06          | BH07          |
| Sample Number                            |       |                       | None Supplied | None Supplied | None Supplied |
| Depth (m)                                |       |                       | None Supplied | None Supplied | None Supplied |
| Date Sampled                             |       |                       | 14/08/2014    | 14/08/2014    | 14/08/2014    |
| Time Taken                               |       |                       | None Supplied | None Supplied | None Supplied |
| Analytical Parameter<br>(Water Analysis) | Units | Limit of<br>detection |               |               |               |

| General Inorganics          |          |      |        |         |         |
|-----------------------------|----------|------|--------|---------|---------|
| pH                          | pH Units | N/A  | 7.9    | 8.5     | 8.1     |
| Electrical Conductivity     | μS/cm    | 10   | 17000  | 34000   | 64000   |
| Salinity                    | ppt      | 2    | 11.2   | 23.9    | > 42    |
| Total Cyanide               | µg/I     | 10   | < 10   | < 10    | < 10    |
| Complex Cyanide             | µg/I     | 10   | < 10   | < 10    | < 10    |
| Free Cyanide                | µg/l     | 10   | < 10   | < 10    | < 10    |
| Sulphate as SO <sub>4</sub> | µg/l     | 45   | 722000 | 1480000 | 2080000 |
| Chloride                    | mg/l     | 0.15 | 4100   | 22000   | 29000   |
| Phosphate as PO₄            | µg/l     | 62   | < 62   | < 62    | < 62    |
| Phosphate as P              | µg/I     | 20   | < 20   | < 20    | < 20    |
| Ammonia as NH <sub>3</sub>  | µg/l     | 15   | 780    | 1900    | 2300    |
| Total Nitrogen (Kjeldahl)   | mg/l     | 0.1  | 3.6    | 3.4     | 3.2     |
| Nitrate as N                | mg/l     | 0.25 | 0.8    | 1.2     | 0.7     |
| Nitrate as NO <sub>3</sub>  | mg/l     | 1.1  | 3.5    | 5.4     | 3.1     |
| Nitrite as N                | µg/l     | 25   | 590    | 940     | 820     |
| Nitrite as NO <sub>2</sub>  | ug/l     | 82   | 1900   | 3100    | 2700    |

#### **Total Phenols**

| Total Phenols (monohydric) | µg/l | 10 | < 10 | < 10 | < 10 |
|----------------------------|------|----|------|------|------|
|                            |      |    |      |      |      |

Heavy Metals / Metalloids

| Arsenic (dissolved)   | µg/l | 0.15  | 1.05   | 2.07  | 2.60   |
|-----------------------|------|-------|--------|-------|--------|
| Cadmium (dissolved)   | µg/l | 0.02  | < 0.02 | 0.09  | 0.10   |
| Chromium (hexavalent) | µg/l | 5     | < 5.0  | < 5.0 | < 5.0  |
| Copper (dissolved)    | µg/l | 0.5   | 8.2    | 6.1   | 7.4    |
| Iron (dissolved)      | mg/l | 0.005 | 0.005  | 0.027 | 0.022  |
| Lead (dissolved)      | µg/l | 0.2   | 0.4    | 1.3   | 1.0    |
| Manganese (dissolved) | µg/l | 0.05  | 170    | 99    | 520    |
| Mercury (dissolved)   | µg/l | 0.05  | 1.32   | 0.80  | < 0.05 |
| Nickel (dissolved)    | µg/l | 0.5   | 9.0    | 18    | 23     |
| Tin (dissolved)       | µg/l | 0.2   | 0.54   | 0.29  | < 0.20 |
| Zinc (dissolved)      | µg/l | 0.5   | 2.2    | 1.6   | 3.5    |
| Magnesium (dissolved) | mg/l | 0.002 | 200    | 810   | 1000   |
| Monoaromatics         |      |       |        |       |        |
| Benzene               | µg/l | 1     | < 1.0  | < 1.0 | < 1.0  |
| Toluene               | µg/l | 1     | < 1.0  | < 1.0 | < 1.0  |
| Ethylbenzene          | µg/l | 1     | < 1.0  | < 1.0 | < 1.0  |
| p & m-xylene          | µg/l | 1     | < 1.0  | < 1.0 | < 1.0  |

| p & m-xylene                       | µg/l | 1  | < 1.0 | < 1.0 | < 1.0 |
|------------------------------------|------|----|-------|-------|-------|
| o-xylene                           | µg/l | 1  | < 1.0 | < 1.0 | < 1.0 |
| Total Btex in water                | μg/l | 5  | < 5.0 | < 5.0 | < 5.0 |
|                                    |      |    |       |       |       |
| MTBE (Methyl Tertiary Butyl Ether) | μg/l | 1  | < 1.0 | < 1.0 | < 1.0 |
|                                    |      |    |       |       |       |
| Petroleum Hydrocarbons             |      |    |       |       |       |
| TPH1 (C10 - C40)                   | µg/l | 10 | 794   | 42    | < 10  |





| I ab Sample Number                       | 365821        | 365822                | 365823        |               |               |
|------------------------------------------|---------------|-----------------------|---------------|---------------|---------------|
| Sample Reference                         |               |                       | BHOE          | BH06          | BH07          |
| Sample Number                            |               |                       | None Supplied | None Supplied | None Supplied |
| Denth (m)                                |               |                       | None Supplied | None Supplied | None Supplied |
| Date Sampled                             |               |                       | 14/08/2014    | 14/08/2014    | 14/08/2014    |
| Time Taken                               |               |                       | None Supplied | None Supplied | None Supplied |
|                                          | None Supplied | None Supplied         | None Supplied |               |               |
| Analytical Parameter<br>(Water Analysis) | Units         | Limit of<br>detection |               |               |               |
| VOCs                                     |               |                       |               |               |               |
| Chloromethane                            | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Chloroethane                             | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Bromomethane                             | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Vinyl Chloride                           | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Trichlorofluoromethane                   | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1.1-dichloroethene                       | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1.1.2-Trichloro 1.2.2-Trifluoroethane    | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Cis-1,2-dichloroethene                   | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| MTBE (Methyl Tertiary Butyl Ether)       | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1.1-dichloroethane                       | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 2.2-Dichloropropane                      | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Trichloromethane                         | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1.1.1-Trichloroethane                    | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1.2-dichloroethane                       | ua/l          | 1                     | 672           | 845           | 638           |
| 1.1-Dichloropropene                      | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Trans-1.2-dichloroethene                 | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Benzene                                  | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Tetrachloromethane                       | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1.2-dichloropropane                      | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Trichloroethene                          | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Dibromomethane                           | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Bromodichloromethane                     | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Cis-1.3-dichloropropene                  | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Trans-1,3-dichloropropene                | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Toluene                                  | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1.1.2-Trichloroethane                    | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1.3-Dichloropropane                      | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Dibromochloromethane                     | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Tetrachloroethene                        | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1.2-Dibromoethane                        | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Chlorobenzene                            | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1,1,1,2-Tetrachloroethane                | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Ethylbenzene                             | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| p & m-xylene                             | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Styrene                                  | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Tribromomethane                          | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| o-xylene                                 | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1,1,2,2-Tetrachloroethane                | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Isopropylbenzene                         | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Bromobenzene                             | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| N-Propylbenzene                          | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 2-Chlorotoluene                          | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 4-Chlorotoluene                          | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1,3,5-Trimethylbenzene                   | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Tert-Butylbenzene                        | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1,2,4-Trimethylbenzene                   | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| Sec-Butylbenzene                         | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1,3-dichlorobenzene                      | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| P-Isopropyltoluene                       | µg/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |
| 1.2-dichlorobenzene                      | ua/l          | 1                     | < 1.0         | < 1.0         | < 1.0         |





| Lab Sample Number                        | 265921        | 265922                | 265022                      |                             |                             |
|------------------------------------------|---------------|-----------------------|-----------------------------|-----------------------------|-----------------------------|
| Sample Reference                         |               | PLIOE                 | PLICE                       | DU07                        |                             |
| Sample Reference                         |               |                       | DEUD<br>None Supplied       | DELOO<br>Nono Supplied      | DEU/                        |
| Sample Number                            |               |                       | None Supplied               | None Supplied               | None Supplied               |
| Depui (III)                              |               |                       | 14/09/2014                  | 14/09/2014                  | 14/09/2014                  |
| Time Taken                               |               |                       | 14/00/2014<br>Nana Supplied | 14/00/2014<br>None Supplied | 14/00/2014<br>None Supplied |
|                                          | None Supplieu | None Supplied         | None Supplied               |                             |                             |
| Analytical Parameter<br>(Water Analysis) | Units         | Limit of<br>detection |                             |                             |                             |
| 1 4-dichlorohenzene                      | ua/l          | 1                     | < 1.0                       | < 1.0                       | < 1.0                       |
| Butylbenzene                             | μg/1<br>μα/Ι  | 1                     | < 1.0                       | < 1.0                       | < 1.0                       |
| 1 2-Dibromo-3-chloropropane              | ua/l          | 1                     | < 1.0                       | < 1.0                       | < 1.0                       |
| 1 2 4-Trichlorobenzene                   | µg/!          | 1                     | < 1.0                       | < 1.0                       | < 1.0                       |
| Hexachlorobutadiene                      | µg/1          | 1                     | < 1.0                       | < 1.0                       | < 1.0                       |
| 1.2.3-Trichlorobenzene                   | μg/1<br>μα/Ι  | 1                     | < 1.0                       | < 1.0                       | < 1.0                       |
| 2/2/0 ********************************** | P9/*          | -                     | 110                         | 1 110                       | . 110                       |
| SVOCs                                    |               |                       |                             |                             |                             |
| Aniline                                  | µg/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Phenol                                   | μg/I          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 2-Chlorophenol                           | μg/I          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Bis(2-chloroethyl)ether                  | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 1,3-Dichlorobenzene                      | µg/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 1,2-Dichlorobenzene                      | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 1.4-Dichlorobenzene                      | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Bis(2-chloroisopropyl)ether              | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 2-Methylphenol                           | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Hexachloroethane                         | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Nitrobenzene                             | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 4-Methylphenol                           | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Isophorone                               | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 2-Nitrophenol                            | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 2.4-Dimethylphenol                       | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Bis(2-chloroethoxy)methane               | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 1.2.4-Trichlorobenzene                   | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Naphthalene                              | ua/l          | 0.01                  | < 0.01                      | < 0.01                      | < 0.01                      |
| 2.4-Dichlorophenol                       | ug/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 4-Chloroaniline                          | ug/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Hexachlorobutadiene                      | ug/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 4-Chloro-3-methylphenol                  | ug/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 2.4.6-Trichlorophenol                    | ug/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 2.4.5-Trichlorophenol                    | ug/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 2-Methylnanhthalene                      | ug/l          | 0.05                  | 0.84                        | 0.49                        | 0.2                         |
| 2-Chloronaphthalene                      | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Dimethylphthalate                        | ua/l          | 0.05                  | 0.29                        | < 0.05                      | 0.17                        |
| 2.6-Dinitrotoluene                       | ug/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Acenaphthylene                           | ua/l          | 0.01                  | < 0.01                      | < 0.01                      | < 0.01                      |
| Acenaphthene                             | ua/l          | 0.01                  | < 0.01                      | < 0.01                      | < 0.01                      |
| 2.4-Dinitrotoluene                       | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Dibenzofuran                             | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| 4-Chlorophenyl phenyl ether              | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Diethyl phthalate                        | ua/l          | 0.05                  | < 0.05                      | < 0.05                      | 0.13                        |
| 4-Nitroaniline                           | ua/l          | 0,05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Fluorene                                 | ua/l          | 0,01                  | < 0.01                      | < 0.01                      | < 0.01                      |
| Azobenzene                               | ua/l          | 0,05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Bromophenyl phenyl ether                 | uo/I          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Hexachlorobenzene                        | ua/l          | 0,05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Phenanthrene                             | ua/l          | 0,01                  | < 0.01                      | < 0.01                      | < 0.01                      |
| Anthracene                               | ua/l          | 0,01                  | < 0.01                      | < 0.01                      | < 0.01                      |
| Carbazole                                | ua/l          | 0,05                  | < 0.05                      | < 0.05                      | < 0.05                      |
| Dibutyl phthalate                        | ug/l          | 0.05                  | < 0.05                      | < 0.05                      | < 0.05                      |





### Analytical Report Number: 14-58890 Project / Site name: WTPS ESIA

| Lab Sample Number                        | 365821        | 365822                | 365823        |               |               |  |
|------------------------------------------|---------------|-----------------------|---------------|---------------|---------------|--|
| Sample Reference                         |               |                       | BH05          | BH06          | BH07          |  |
| Sample Number                            |               |                       | None Supplied | None Supplied | None Supplied |  |
| Depth (m)                                |               |                       | None Supplied | None Supplied | None Supplied |  |
| Date Sampled                             |               |                       | 14/08/2014    | 14/08/2014    | 14/08/2014    |  |
| Time Taken                               | None Supplied | None Supplied         | None Supplied |               |               |  |
| Analytical Parameter<br>(Water Analysis) | Units         | Limit of<br>detection |               |               |               |  |
| Anthraquinone                            | µg/l          | 0.05                  | < 0.05        | < 0.05        | < 0.05        |  |
| Fluoranthene                             | µg/l          | 0.01                  | < 0.01        | < 0.01        | < 0.01        |  |
| Pyrene                                   | µg/l          | 0.01                  | < 0.01        | < 0.01        | < 0.01        |  |
| Butyl benzyl phthalate                   | µg/l          | 0.05                  | < 0.05        | < 0.05        | < 0.05        |  |
| Benzo(a)anthracene                       | µg/l          | 0.01                  | < 0.01        | < 0.01        | < 0.01        |  |
| Chrysene                                 | µg/l          | 0.01                  | < 0.01        | < 0.01        | < 0.01        |  |
| Benzo(b)fluoranthene                     | µg/l          | 0.01                  | < 0.01        | < 0.01        | < 0.01        |  |
| Benzo(k)fluoranthene                     | µg/l          | 0.01                  | < 0.01        | < 0.01        | < 0.01        |  |
| Benzo(a)pyrene                           | µg/l          | 0.01                  | < 0.01        | < 0.01        | < 0.01        |  |
| Indeno(1,2,3-cd)pyrene                   | µg/l          | 0.01                  | < 0.01        | < 0.01        | < 0.01        |  |
| Dibenz(a,h)anthracene                    | µg/l          | 0.01                  | < 0.01        | < 0.01        | < 0.01        |  |
| Benzo(ghi)perylene                       | µg/l          | 0.01                  | < 0.01        | < 0.01        | < 0.01        |  |



### Project / Site name: WTPS ESIA

### Sampling

| Lab<br>Sample<br>Number | Sample<br>Reference | Sample Number | Depth (m)     | Date<br>Sampled | Time Taken       | Sample<br>type | Sample state<br>(odour, color<br>etc) | Sampling personel          | Sampling plan No.          | Reference document         |
|-------------------------|---------------------|---------------|---------------|-----------------|------------------|----------------|---------------------------------------|----------------------------|----------------------------|----------------------------|
| 365817                  | BH01                | None Supplied | None Supplied | 14/08/2014      | None<br>Supplied | water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 365818                  | BH02                | None Supplied | None Supplied | 14/08/2014      | None<br>Supplied | water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 365819                  | BH03                | None Supplied | None Supplied | 14/08/2014      | None<br>Supplied | water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 365820                  | BH04                | None Supplied | None Supplied | 14/08/2014      | None<br>Supplied | water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 365821                  | BH05                | None Supplied | None Supplied | 14/08/2014      | None<br>Supplied | water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 365822                  | BH06                | None Supplied | None Supplied | 14/08/2014      | None<br>Supplied | water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 365823                  | BH07                | None Supplied | None Supplied | 14/08/2014      | None<br>Supplied | water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |

Uncertainty 10% Samples were collected and delivered to the laboratory by the client





| Analytical Test Name                     | Analytical Method Description                                                                                                                                                                                                                                                                      | Analytical Method Reference                                                                                                                                              | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Ammonia as NH3 in water                  | Determination of Ammonium/Ammonia/Ammoniacal<br>Nitrogen by the colorimetric salicylate/nitroprusside<br>method. Accredited matrices SW, GW, PW.                                                                                                                                                   | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton                                                             | L082-PL          | W                     | ISO 17025               |
| BTEX and MTBE in water                   | Determination of BTEX and MTBE in water by<br>headspace GC-MS. Accredited matrices: SW PW GW                                                                                                                                                                                                       | In-house method based on USEPA8260                                                                                                                                       | L073W-PL         | W                     | ISO 17025               |
| Chloride in water                        | Determination of Chloride in water by Gallery<br>Discrete Analyser based on reaction with mercury<br>(II) thiocyanate and acid solution with iron (III)<br>nitrate to form a red/brown iron (III) thiocyanate<br>complex; followed by spectrophotometrice<br>measurementat a wavelenght of 480 nm. | Methods for the Examination of Water and<br>Associated Materials Chloride in Waters,<br>Sewage and Effluents 1981.ISBN<br>0117516260 Accredited matrices: SW, PW,<br>GW. | L082 B           | W                     | ISO 17025               |
| Complex cyanide in water                 | Determination of complex cyanide by distillation followed by colorimetry.                                                                                                                                                                                                                          | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar)                                                    | L080-PL          | W                     | NONE                    |
| Electrical conductivity of water         | Determination of electrical conductivity in water by<br>electrometric measurement.                                                                                                                                                                                                                 | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton                                                             | L031-PL          | w                     | NONE                    |
| Free cyanide in water                    | Determination of free cyanide by distillation followed by colorimetry.                                                                                                                                                                                                                             | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar)                                                    | L080-PL          | w                     | ISO 17025               |
| Hexavalent chromium in water             | Determination of hexavalent chromium in water by<br>acidification, addition of 1,5 diphenylcarbazide<br>followed by colorimetry.                                                                                                                                                                   | In-house method by continuous flow<br>analyser. Accredited Matrices SW, GW, PW.                                                                                          | L080-PL          | w                     | ISO 17025               |
| Kjeldahl nitrogen in water               | Determination of total nitrogen using the Kjeldahl-<br>digestion method and colorimetric determination.                                                                                                                                                                                            | In house method based on BS 7755-<br>3.7:1995 & ISO 11261:1995.                                                                                                          | L087-PL          | W                     | NONE                    |
| Metals in water by ICP-MS (dissolved)    | Determination of metals in water by acidification<br>followed by ICP-MS. Accredited Matrices: SW, GW,<br>PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.                                                                                                                                                    | In-house method based on MEWAM 1986<br>Methods for the Determination of Metals in<br>Soil""                                                                              | L012-PL          | W                     | ISO 17025               |
| Monohydric phenols in water              | Determination of phenols in water by continuous<br>flow analyser. Accredited matrices: SW PW GW                                                                                                                                                                                                    | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (skalar)                                                    | L080-PL          | W                     | ISO 17025               |
| Nitrate in water                         | Determination of nitrate in water by colorimetric assay. Accredited matrices SW, GW, PW.                                                                                                                                                                                                           | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton                                                             | L078-PL          | w                     | ISO 17025               |
| Nitrite in water                         | Determination of nitrite in water by addition of<br>sulphanilamide and NED followed by<br>colorimetry.Accredited matrices SW, GW, PW.                                                                                                                                                              | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton                                                             | L077-PL          | w                     | ISO 17025               |
| pH in water                              | Determination of pH in water by electrometric<br>measurement. Accredited matrices: SW PW GW                                                                                                                                                                                                        | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests                                                                                      | L005-PL          | w                     | ISO 17025               |
| Salinity                                 | Determination of salinity of water by electrometric measurement.                                                                                                                                                                                                                                   | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton                                                             | L031-PL          | w                     | NONE                    |
| Semi-volatile organic compounds in water | Determination of semi-volatile organic compounds in<br>leachate by extraction in dichloromethane followed<br>by GC-MS.                                                                                                                                                                             | In-house method based on USEPA 8270                                                                                                                                      | L070-PL          | W                     | NONE                    |





| Analytical Test Name                | Analytical Method Description                                                                                                                                                           | Analytical Method Reference                                                                                                                     | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Sulphate in water                   | Determination of sulphate in water by acidification<br>followed by ICP-OES. Accredited matrices: SW PW<br>GW                                                                            | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                                                      | L039-PL          | W                     | ISO 17025               |
| Sulphate in water                   | for the Determination of Metals in Soil""                                                                                                                                               | In-house method based on MEWAM 1986<br>Methods                                                                                                  | L039-PL          |                       | ISO 17025               |
| Total cyanide in water              | Determination of total cyanide by distillation followed<br>by colorimetry. Accredited matrices: SW PW GW                                                                                | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar)                           | L080-PL          | W                     | ISO 17025               |
| Total Phosphate in water            | Determination of phosphate in water by addition of<br>ammonium molybdate, potassium antimonyl tartrate<br>and ascorbic acid followed by colorimetry.Accredited<br>matrices: SW, PW, GW. | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton, analysis by<br>discreet analyser. | L048-PL          | W                     | ISO 17025               |
| TPH1 (Waters)                       | Determination of dichloromethane extractable hydrocarbons in water by GC-MS.                                                                                                            | In-house method                                                                                                                                 | L070-PL          | W                     | ISO 17025               |
| Volatile organic compounds in water | Determination of volatile organic compounds in<br>water by headspace GC-MS. Accredited matrices:<br>SW PW GW                                                                            | In-house method based on USEPA8260                                                                                                              | L073W-PL         | W                     | ISO 17025               |



Environmental and Social Impact Assessment KAZ Oil Terminal Project, Iraq

# **Appendix H2: Surface Water Laboratory Analytical Certificates**



**David Wells** Earth & Marine Enviromental Consultants 6 Bell Yard WC2A 2JR London

t: 01322 665566 f: 01322 661480 e: david.wells@eame.co.uk

# Analytical Report Number : 14-60552B

**Project / Site name:** WTPS ESIA Samples received on: 29/09/2014 Your job number: Samples instructed on: 29/09/2014 Your order number: Analysis completed by: 10-10-2014 **Report Issue Number:** 1 **Report issued on:** 10-10-2014 Samples Analysed: 10 water samples Agnieszka Pietrowska Reparka Kierownik ds. jakości ctor ds. Techn Signed: Signed: 2 Analytical Limited Sp. z o.o. Oddział w Polsce ul. Pionierów 39 Dariusz Piotrowski Agnieszka Pietrowska **Technical Manager Quality Manager** 41-711 Ruda Stęska For & on behalf of i2 Analytical Ltd. For & on behalf of i2 Analytical Ltd. NIP 2050000782 Other office located at: Building 19, BRE, Garston, Watford, WD25 9XX Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

soils

waters

leachates - 2 weeks from reporting - 2 weeks from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.



ul.Pionierów 39, 41-711 Ruda Slaska, Poland

t: 004832 3426011 f: 004832 3426012

Iss No 14-60552B-1-PL EAME -WTPS ESIA.xls

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the sample's submitted for analysis





Project / Site name: WTPS ESIA

Benzo(k)fluoranthene

| Lab Sample Number                        | 376266     | 376267                | 376268        | 376269        |               |               |
|------------------------------------------|------------|-----------------------|---------------|---------------|---------------|---------------|
| Sample Reference                         | SW01       | SW01                  | SWO2          | SWO2          |               |               |
| Sample Number                            |            |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Depth (m)                                | 1.0        | 12.7                  | 1.0           | 13.3          |               |               |
| Date Sampled                             | 13/09/2014 | 13/09/2014            | 13/09/2014    | 13/09/2014    |               |               |
| Time Taken                               |            |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Analytical Parameter<br>(Water Analysis) | Units      | Limit of<br>detection |               |               |               |               |

| General Inorganics         |          |      |         |         |         |         |
|----------------------------|----------|------|---------|---------|---------|---------|
| pН                         | pH Units | N/A  | 7.8     | 7.9     | 7.9     | 7.9     |
| Electrical Conductivity    | µS/cm    | 10   | 59000   | 50000   | 56000   | 52000   |
| Salinity                   | ppt      | 2    | > 42    | 36.7    | 41.7    | 38.4    |
| Total Cyanide              | µg/l     | 10   | < 10    | < 10    | < 10    | < 10    |
| Complex Cyanide            | µg/l     | 10   | < 10    | < 10    | < 10    | < 10    |
| Free Cyanide               | μg/l     | 10   | < 10    | < 10    | < 10    | < 10    |
| Sulphate as SO₄            | µg/I     | 45   | 3850000 | 3810000 | 4950000 | 4510000 |
| Chloride                   | mg/l     | 0.15 | 17000   | 16000   | 15000   | 15000   |
| Phosphate as $PO_4$        | µg/I     | 62   | < 62    | 62      | < 62    | < 62    |
| Phosphate as P             | μg/l     | 20   | < 20    | 20      | < 20    | < 20    |
| Total Nitrogen (Kjeldahl)  | mg/l     | 0.1  | 7.3     | 5.3     | 4.6     | 2.9     |
| Nitrate as N               | mg/l     | 0.25 | < 0.3   | < 0.3   | 0.4     | < 0.3   |
| Nitrate as NO <sub>3</sub> | mg/l     | 1.1  | < 1.1   | < 1.1   | 1.9     | < 1.1   |
| Nitrite as N               | µg/l     | 25   | < 25    | < 25    | < 25    | < 25    |
| Nitrite as NO <sub>2</sub> | µg/I     | 82   | < 82    | < 82    | < 82    | < 82    |
| Total Phenols              |          |      |         |         |         |         |
| Total Phenols (monohydric) | µg/l     | 10   | < 10    | < 10    | < 10    | < 10    |
| Speciated PAHs             |          | -    |         |         |         |         |
| Naphthalene                | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Acenaphthylene             | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Acenaphthene               | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Fluorene                   | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Phenanthrene               | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Anthracene                 | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Fluoranthene               | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Pyrene                     | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Benzo(a)anthracene         | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Chrysene                   | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Benzo(b)fluoranthene       | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |

| Benzo(a)pyrene         | µg/l | 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
|------------------------|------|------|--------|--------|--------|--------|
| Indeno(1,2,3-cd)pyrene | µg/l | 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Dibenz(a,h)anthracene  | µg/l | 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Benzo(ghi)perylene     | µg/l | 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
|                        |      |      |        |        |        |        |
| Total PAH              |      |      |        |        |        |        |
| Total EPA-16 PAHs      | ua/l | 0.2  | < 0.2  | < 0.2  | < 0.2  | < 0.2  |

< 0.01

< 0.01

< 0.01

< 0.01

0.01

µg/l





Project / Site name: WTPS ESIA

| Lab Sample Number                        |       |                       | 376266        | 376267        | 376268        | 376269        |
|------------------------------------------|-------|-----------------------|---------------|---------------|---------------|---------------|
| Sample Reference                         |       |                       | SW01          | SW01          | SW02          | SWO2          |
| Sample Number                            |       |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Depth (m)                                |       | 1.0                   | 12.7          | 1.0           | 13.3          |               |
| Date Sampled                             |       |                       | 13/09/2014    | 13/09/2014    | 13/09/2014    | 13/09/2014    |
| Time Taken                               |       |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Analytical Parameter<br>(Water Analysis) | Units | Limit of<br>detection |               |               |               |               |
| Heavy Metals / Metalloids                |       |                       |               |               |               |               |
| Arsenic (dissolved)                      | µg/l  | 0.15                  | 5.04          | 4.69          | 4.45          | 3.70          |
| Cadmium (dissolved)                      | µg/l  | 0.02                  | 0.02          | 0.02          | 0.05          | < 0.02        |
| Chromium (hexavalent)                    | µg/l  | 5                     | < 5.0         | < 5.0         | < 5.0         | < 5.0         |
| Copper (dissolved)                       | µg/l  | 0.5                   | 15            | 18            | 14            | 19            |
| Iron (dissolved)                         | mg/l  | 0.005                 | 0.021         | 0.020         | 0.019         | 0.016         |
| Lead (dissolved)                         | µg/l  | 0.2                   | 0.9           | 0.8           | 0.7           | 0.7           |
| Manganese (dissolved)                    | µg/l  | 0.05                  | 0.75          | 0.81          | 0.36          | 0.31          |
| Mercury (dissolved)                      | µg/l  | 0.05                  | 1.45          | 1.30          | 1.28          | 1.16          |
| Nickel (dissolved)                       | µg/l  | 0.5                   | 3.7           | 3.8           | 4.9           | 4.5           |
| Tin (dissolved)                          | µg/l  | 0.2                   | 0.60          | < 0.20        | < 0.20        | < 0.20        |
| Zinc (dissolved)                         | µg/l  | 0.5                   | 4.5           | 5.2           | 3.2           | 4.0           |
| Magnesium (dissolved)                    | mg/l  | 0.002                 | 1700          | 1700          | 1800          | 1700          |
| Petroleum Hydrocarbons                   |       |                       |               |               |               |               |
| TPH1 (C10 - C40)                         | µg/l  | 10                    | < 10          | < 10          | < 10          | < 10          |





| Lab Sample Number                        | 376270     | 376271                | 376272        | 376273        |               |               |
|------------------------------------------|------------|-----------------------|---------------|---------------|---------------|---------------|
| Sample Reference                         | SW03       | SW03                  | SWO4          | SWO4          |               |               |
| Sample Number                            |            |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Depth (m)                                |            |                       | 1.0           | 15.1          | 1.0           | 10.0          |
| Date Sampled                             | 13/09/2014 | 13/09/2014            | 13/09/2014    | 13/09/2014    |               |               |
| Time Taken                               |            |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Analytical Parameter<br>(Water Analysis) | Units      | Limit of<br>detection |               |               |               |               |

| General Inorganics           |          |      |         |         |         |         |
|------------------------------|----------|------|---------|---------|---------|---------|
| pН                           | pH Units | N/A  | 7.9     | 7.9     | 7.9     | 7.9     |
| Electrical Conductivity      | μS/cm    | 10   | 74000   | 57000   | 63000   | 65000   |
| Salinity                     | ppt      | 2    | > 42    | > 42    | > 42    | > 42    |
| Total Cyanide                | µg/l     | 10   | < 10    | < 10    | < 10    | < 10    |
| Complex Cyanide              | µg/l     | 10   | < 10    | < 10    | < 10    | < 10    |
| Free Cyanide                 | µg/l     | 10   | < 10    | < 10    | < 10    | < 10    |
| Sulphate as SO <sub>4</sub>  | µg/l     | 45   | 3940000 | 4090000 | 4950000 | 5020000 |
| Chloride                     | mg/l     | 0.15 | 17000   | 16000   | 11000   | 16000   |
| Phosphate as PO <sub>4</sub> | µg/l     | 62   | < 62    | < 62    | < 62    | < 62    |
| Phosphate as P               | µg/l     | 20   | < 20    | < 20    | < 20    | < 20    |
| Total Nitrogen (Kjeldahl)    | mg/l     | 0.1  | 2.3     | 1.8     | 1.7     | 1.4     |
| Nitrate as N                 | mg/l     | 0.25 | < 0.3   | < 0.3   | 0.3     | < 0.3   |
| Nitrate as NO <sub>3</sub>   | mg/l     | 1.1  | < 1.1   | < 1.1   | 1.2     | < 1.1   |
| Nitrite as N                 | µg/l     | 25   | < 25    | < 25    | < 25    | < 25    |
| Nitrite as NO <sub>2</sub>   | µg/I     | 82   | < 82    | < 82    | < 82    | < 82    |
| Total Phenols (monohydric)   | µg/I     | 10   | < 10    | < 10    | < 10    | < 10    |
| Speciated PAHs               |          |      |         |         |         |         |
| Naphthalene                  | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Acenaphthylene               | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Acenaphthene                 | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Fluorene                     | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Phenanthrene                 | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Anthracene                   | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Fluoranthene                 | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Pyrene                       | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Benzo(a)anthracene           | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Chrysene                     | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Benzo(b)fluoranthene         | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Benzo(k)fluoranthene         | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Benzo(a)pyrene               | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Indeno(1,2,3-cd)pyrene       | µg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Dibenz(a,h)anthracene        | μg/l     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Benzo(ghi)perylene           | µg/I     | 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  |

| Total PAH         |      |     |       |       |       |       |
|-------------------|------|-----|-------|-------|-------|-------|
| Total EPA-16 PAHs | µg/l | 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 |





Project / Site name: WTPS ESIA

| Lab Sample Number                        |       |                       | 376270        | 376271        | 376272        | 376273        |
|------------------------------------------|-------|-----------------------|---------------|---------------|---------------|---------------|
| Sample Reference                         |       |                       | SW03          | SW03          | SW04          | SW04          |
| Sample Number                            |       |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Depth (m)                                |       | 1.0                   | 15.1          | 1.0           | 10.0          |               |
| Date Sampled                             |       |                       | 13/09/2014    | 13/09/2014    | 13/09/2014    | 13/09/2014    |
| Time Taken                               |       |                       | None Supplied | None Supplied | None Supplied | None Supplied |
| Analytical Parameter<br>(Water Analysis) | Units | Limit of<br>detection |               |               |               |               |
| Heavy Metals / Metalloids                |       |                       |               |               |               |               |
| Arsenic (dissolved)                      | µg/l  | 0.15                  | 4.57          | 3.42          | 4.39          | 3.35          |
| Cadmium (dissolved)                      | µg/l  | 0.02                  | < 0.02        | 0.02          | < 0.02        | 0.03          |
| Chromium (hexavalent)                    | µg/l  | 5                     | < 5.0         | < 5.0         | < 5.0         | < 5.0         |
| Copper (dissolved)                       | µg/l  | 0.5                   | 11            | 12            | 13            | 11            |
| Iron (dissolved)                         | mg/l  | 0.005                 | 0.021         | 0.015         | 0.019         | 0.018         |
| Lead (dissolved)                         | µg/l  | 0.2                   | 0.7           | 0.6           | 0.7           | 0.7           |
| Manganese (dissolved)                    | µg/l  | 0.05                  | 1.0           | 0.58          | 0.94          | 1.3           |
| Mercury (dissolved)                      | µg/l  | 0.05                  | 1.15          | 1.18          | 1.05          | 1.09          |
| Nickel (dissolved)                       | µg/l  | 0.5                   | 3.9           | 2.9           | 4.6           | 3.6           |
| Tin (dissolved)                          | µg/l  | 0.2                   | < 0.20        | < 0.20        | < 0.20        | < 0.20        |
| Zinc (dissolved)                         | µg/l  | 0.5                   | 4.8           | 3.2           | 3.1           | 3.4           |
| Magnesium (dissolved)                    | mg/l  | 0.002                 | 1800          | 1800          | 1700          | 1800          |
| Petroleum Hydrocarbons                   |       |                       |               |               |               |               |
| TPH1 (C10 - C40)                         | µg/l  | 10                    | < 10          | < 10          | < 10          | < 10          |





### Analytical Report Number: 14-60552B Project / Site name: WTPS ESIA

| Lab Sample Number                        |       |                       | 376274        | 376275        |
|------------------------------------------|-------|-----------------------|---------------|---------------|
| Sample Reference                         |       |                       | SW05          | SW05          |
| Sample Number                            |       |                       | None Supplied | None Supplied |
| Depth (m)                                |       |                       | 1.0           | 11.0          |
| Date Sampled                             |       |                       | 13/09/2014    | 13/09/2014    |
| Time Taken                               |       |                       | None Supplied | None Supplied |
| Analytical Parameter<br>(Water Analysis) | Units | Limit of<br>detection |               |               |

#### **General Inorganics** рH pH Units N/A 7.8 7.9 Electrical Conductivity 53000 µS/cm 10 68000 Salinity ppt 2 > 42 39.2 Total Cyanide 10 < 10 < 10 µg/l Complex Cyanide 10 < 10 < 10 µg/l 10 < 10 < 10 Free Cyanide µg/l 4810000 4670000 Sulphate as SO<sub>4</sub> 45 µg/l Chloride Phosphate as PO<sub>4</sub> mg/l 0.15 17000 15000 µg/l 62 < 62 < 62 Phosphate as P 20 < 20 < 20 µg/l Total Nitrogen (Kjeldahl) 0.1 1.5 1.8 mg/l Nitrate as N Nitrate as NO<sub>3</sub> mg/l 0.25 < 0.3 < 0.3 1.1 < 1.1 < 1.1 mg/l Nitrite as N Nitrite as NO<sub>2</sub> 25 82 < 25 < 82 < 25 < 82 µg/l µg/l

#### **Total Phenols**

| Total Phenols (monohydric) | µg/l | 10 | < 10 | < 10 |
|----------------------------|------|----|------|------|
|                            |      |    |      |      |

### Speciated PAHs

| Naphthalene            | µg/l | 0.01 | < 0.01 | < 0.01 |
|------------------------|------|------|--------|--------|
| Acenaphthylene         | µg/l | 0.01 | < 0.01 | < 0.01 |
| Acenaphthene           | µg/l | 0.01 | < 0.01 | < 0.01 |
| Fluorene               | µg/l | 0.01 | < 0.01 | < 0.01 |
| Phenanthrene           | µg/l | 0.01 | < 0.01 | < 0.01 |
| Anthracene             | µg/l | 0.01 | < 0.01 | < 0.01 |
| Fluoranthene           | µg/l | 0.01 | < 0.01 | < 0.01 |
| Pyrene                 | µg/l | 0.01 | < 0.01 | < 0.01 |
| Benzo(a)anthracene     | µg/l | 0.01 | < 0.01 | < 0.01 |
| Chrysene               | µg/l | 0.01 | < 0.01 | < 0.01 |
| Benzo(b)fluoranthene   | µg/l | 0.01 | < 0.01 | < 0.01 |
| Benzo(k)fluoranthene   | µg/l | 0.01 | < 0.01 | < 0.01 |
| Benzo(a)pyrene         | µg/l | 0.01 | < 0.01 | < 0.01 |
| Indeno(1,2,3-cd)pyrene | µg/l | 0.01 | < 0.01 | < 0.01 |
| Dibenz(a,h)anthracene  | µg/l | 0.01 | < 0.01 | < 0.01 |
| Benzo(ghi)perylene     | µg/l | 0.01 | < 0.01 | < 0.01 |

| Total PAH         |      |     |       |       |
|-------------------|------|-----|-------|-------|
| Total EPA-16 PAHs | µg/l | 0.2 | < 0.2 | < 0.2 |
|                   |      |     |       |       |





### Analytical Report Number: 14-60552B Project / Site name: WTPS ESIA

| Lab Sample Number                        | 376274        | 376275                |               |               |
|------------------------------------------|---------------|-----------------------|---------------|---------------|
| Sample Reference                         | SWO5          | SWO5                  |               |               |
| Sample Number                            | None Supplied | None Supplied         |               |               |
| Depth (m)                                |               |                       | 1.0           | 11.0          |
| Date Sampled                             |               |                       | 13/09/2014    | 13/09/2014    |
| Time Taken                               |               |                       | None Supplied | None Supplied |
| Analytical Parameter<br>(Water Analysis) | Units         | Limit of<br>detection |               |               |
| Heavy Metals / Metalloids                |               |                       |               |               |
| Arsenic (dissolved)                      | µg/l          | 0.15                  | 5.00          | 4.71          |
| Cadmium (dissolved)                      | µg/l          | 0.02                  | < 0.02        | < 0.02        |
| Chromium (hexavalent)                    | µg/l          | 5                     | < 5.0         | < 5.0         |
| Copper (dissolved)                       | µg/l          | 0.5                   | 19            | 19            |
| Iron (dissolved)                         | mg/l          | 0.005                 | 0.020         | 0.026         |
| Lead (dissolved)                         | µg/l          | 0.2                   | 5.9           | 0.5           |
| Manganese (dissolved)                    | µg/l          | 0.05                  | 1.3           | 1.2           |
| Mercury (dissolved)                      | µg/l          | 0.05                  | 1.02          | 1.03          |
| Nickel (dissolved)                       | µg/l          | 0.5                   | 4.9           | 4.2           |
| Tin (dissolved)                          | µg/l          | 0.2                   | < 0.20        | < 0.20        |
| Zinc (dissolved)                         | µg/I          | 0.5                   | 13            | 8.0           |
| Magnesium (dissolved)                    | ma/l          | 0.002                 | 1800          | 1700          |
|                                          | mg/i          | 0.002                 | 1000          | 1700          |
| Petroleum Hydrocarbons                   |               |                       |               |               |
| TPH1 (C10 - C40)                         | µg/l          | 10                    | < 10          | < 10          |
|                                          |               |                       |               |               |



### Project / Site name: WTPS ESIA

### Sampling

| Lab<br>Sample<br>Number | Sample<br>Reference | Sample<br>Number | Depth (m) | Date<br>Sampled | Time Taken       | Sample<br>type | Sample state<br>(odour, color<br>etc) | Sampling personel          | Sampling plan No.          | Reference document         |
|-------------------------|---------------------|------------------|-----------|-----------------|------------------|----------------|---------------------------------------|----------------------------|----------------------------|----------------------------|
| 376266                  | SWO1                | None Supplied    | 1.0       | 13/09/2014      | None<br>Supplied | Water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 376267                  | SWO1                | None Supplied    | 12.7      | 13/09/2014      | None<br>Supplied | Water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 376268                  | SWO2                | None Supplied    | 1.0       | 13/09/2014      | None<br>Supplied | Water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 376269                  | SWO2                | None Supplied    | 13.3      | 13/09/2014      | None<br>Supplied | Water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 376270                  | SWO3                | None Supplied    | 1.0       | 13/09/2014      | None<br>Supplied | Water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 376271                  | SWO3                | None Supplied    | 15.1      | 13/09/2014      | None<br>Supplied | Water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 376272                  | SWO4                | None Supplied    | 1.0       | 13/09/2014      | None<br>Supplied | Water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 376273                  | SWO4                | None Supplied    | 10.0      | 13/09/2014      | None<br>Supplied | Water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 376274                  | SWO5                | None Supplied    | 1.0       | 13/09/2014      | None<br>Supplied | Water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |
| 376275                  | SWO5                | None Supplied    | 11.0      | 13/09/2014      | None<br>Supplied | Water          | None Supplied                         | As specified by the client | As specified by the client | As specified by the client |

 Uncertainty
 10%

 Samples were collected and delivered to the laboratory by the client





### Project / Site name: WTPS ESIA

#### Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

| Analytical Test Name                  | Analytical Method Description                                                                                                                                                                                                                                                                      | Analytical Method Reference                                                                                                                                              | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Chloride in water                     | Determination of Chloride in water by Gallery<br>Discrete Analyser based on reaction with mercury<br>(II) thiocyanate and acid solution with iron (III)<br>nitrate to form a red/brown iron (III) thiocyanate<br>complex; followed by spectrophotometrice<br>measurementat a wavelenght of 480 nm. | Methods for the Examination of Water and<br>Associated Materials Chloride in Waters,<br>Sewage and Effluents 1981.ISBN<br>0117516260 Accredited matrices: SW, PW,<br>GW. | L082 B           | W                     | ISO 17025               |
| Electrical conductivity of water      | Determination of electrical conductivity in water by<br>electrometric measurement.                                                                                                                                                                                                                 | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton                                                             | L031-UK          | W                     | NONE                    |
| Hexavalent chromium in water          | Determination of hexavalent chromium in water by<br>acidification, addition of 1,5 diphenylcarbazide<br>followed by colorimetry.                                                                                                                                                                   | In-house method by continuous flow<br>analyser. Accredited Matrices SW, GW, PW.                                                                                          | L080-PL          | W                     | ISO 17025               |
| Kjeldahl nitrogen in water            | Determination of total nitrogen using the Kjeldahl-<br>digestion method and colorimetric determination.                                                                                                                                                                                            | In house method based on BS 7755-<br>3.7:1995 & ISO 11261:1995.                                                                                                          | L087-PL          | W                     | NONE                    |
| Metals in soil by ICP-OES             | Determination of metals in soil by aqua-regia digestion followed by ICP-OES.                                                                                                                                                                                                                       | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                                                                               | L038-PL          | D                     | ISO 17025               |
| Metals in water by ICP-MS (dissolved) | Determination of metals in water by acidification<br>followed by ICP-MS. Accredited Matrices: SW, GW,<br>PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.                                                                                                                                                    | In-house method based on MEWAM 1986<br>Methods for the Determination of Metals in<br>Soil""                                                                              | L012-PL          | W                     | ISO 17025               |
| Monohydric phenols in water           | Determination of phenols in water by continuous<br>flow analyser. Accredited matrices: SW PW GW                                                                                                                                                                                                    | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (skalar)                                                    | L080-PL          | W                     | ISO 17025               |
| Nitrate in water                      | Determination of nitrate in water by colorimetric assay. Accredited matrices SW, GW, PW.                                                                                                                                                                                                           | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton                                                             | L078-PL          | W                     | ISO 17025               |
| Nitrite in water                      | Determination of nitrite in water by addition of<br>sulphanilamide and NED followed by<br>colorimetry.Accredited matrices SW, GW, PW.                                                                                                                                                              | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton                                                             | L077-PL          | w                     | ISO 17025               |
| pH in water                           | Determination of pH in water by electrometric<br>measurement. Accredited matrices: SW PW GW                                                                                                                                                                                                        | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests                                                                                      | L005-PL          | W                     | ISO 17025               |
| Salinity                              | Determination of salinity of water by electrometric measurement.                                                                                                                                                                                                                                   | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton                                                             | L031-PL          | w                     | NONE                    |
| Speciated EPA-16 PAHs in water        | Determination of PAH compounds in water by<br>extraction in dichloromethane followed by GC-MS<br>with the use of surrogate and internal standards.                                                                                                                                                 | In-house method based on USEPA 8270                                                                                                                                      | L070-PL          | W                     | NONE                    |
| Sulphate in water                     | Determination of sulphate in water by acidification<br>followed by ICP-OES. Accredited matrices: SW PW<br>GW                                                                                                                                                                                       | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                                                                               | L039-PL          | W                     | ISO 17025               |
| Sulphate in water                     | for the Determination of Metals in Soil""                                                                                                                                                                                                                                                          | In-house method based on MEWAM 1986<br>Methods                                                                                                                           | L039-PL          |                       | ISO 17025               |
| Total cyanide in water                | Determination of total cyanide by distillation followed<br>by colorimetry. Accredited matrices: SW PW GW                                                                                                                                                                                           | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar)                                                    | L080-PL          | W                     | ISO 17025               |





#### Project / Site name: WTPS ESIA

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

| Analytical Test Name     | Analytical Method Description                                                                                                                                                           | Analytical Method Reference                                                                                                                     | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Total Phosphate in water | Determination of phosphate in water by addition of<br>ammonium molybdate, potassium antimonyl tartrate<br>and ascorbic acid followed by colorimetry.Accredited<br>matrices: SW, PW, GW. | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton, analysis by<br>discreet analyser. | L048-PL          | W                     | ISO 17025               |
| TPH1 (Waters)            | Determination of dichloromethane extractable hydrocarbons in water by GC-MS.                                                                                                            | In-house method                                                                                                                                 | L070-PL          | W                     | ISO 17025               |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.